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Formation of asymmetric states of spiral waves in oscillatory media
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The stability of the symmetric two-spiral state against asymmetric perturbations is investigated.
It is shown that the bound states are always unstable against a spontaneous breaking of symmetry,
which leads to the formation of states with one dominant spiral. The existence and the stability of

lattices of topological defects are discussed.
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The complex Ginzburg-Landau equation (CGLE)

6—‘: = a+ (1 +1ib)Aa— (1 +ic)|al?a (1)
plays the role of a normal form in the vicinity of a su-
percritical transition to an oscillatory state in spatially
extended systems and is thus very general. Here the
complex field a describes the amplitude and phase of the
modulations of the pattern [1-3)]. In a recent paper [4] we
have presented a detailed investigation of the asymptotic
interaction of spirals. Spiral solutions have short-range
interaction for b—c # 0 [5, 6]. Here interaction manifests
itself in a motion of each spiral. The resulting velocity
has a radial (along the line connecting the spiral cores)
and a tangential component.

In Ref. [4] we considered only symmetric spiral pairs
where the two spirals are equivalent (equally or oppo-
sitely charged). Approximate solutions were constructed
by starting with isolated spirals, each one restricted to
the half space filled by its emitted wave and moving
with (small) velocities to be determined. The remain-
ing distortions were assumed to be small and essentially
time independent and could be determined from the lin-
earized problem with boundary conditions that took into
account the neighboring spiral. Once a system of linearly
independent solutions for the distortions was determined
numerically and used to match the boundary conditions
the velocity versus distance relation was obtained ana-
lytically. The analysis showed that for sufficiently large
values of |b — ¢, i.e., for |(c — b)/(1 + bc)| > cer = 0.845,
the interaction is oscillatory, leading to symmetric bound
states. For smaller values of |b — ¢| one always appears
to have asymptotic repulsion turning into attraction at
smaller distances for oppositely charged spirals.

There is numerical evidence that symmetric bound
states after a sufficiently long evolution spontaneously

|

break the symmetry and one spiral begins to domi-
nate, pushing away other spirals [7]. In fact, at least
in the convectively unstable but absolutely stable range,
a symmetry-broken state is produced directly from ran-
dom initial conditions [8]. To understand the symmetry-
breaking instability one may consider the perturbation
of the frequency w of the waves emitted by each spiral,
caused by the interaction with the other spiral. Indeed,
from the analysis of CGLE it is known that the shock
(or sink) where two waves with different frequencies w;
collide moves in the direction of smaller frequency, which
means that after a sufficiently long time only the larger
frequency [or equivalently the larger wave number be-
cause of the dispersion relation w = —c(1 — k2) — bk?]
dominates in a bounded system. The velocity of the mo-
tion is given by vy ~ (c — b)(k1 + k2) = 2(vg1 + vg2),
where vy = dw/dk is the group velocity of a plane-wave
state. Therefore, if, due to the interaction, the frequen-
cies of rotation of the spirals become different, one can
expect a breaking of the symmetry of the system. This
effect should be very important in the late stage of spiral
evolution.

In this article we show that the two cases characterizing
the behavior of the interaction in fact also characterize
the symmetry breaking. Thus symmetric bound states
are in fact (weakly) unstable with respect to asymmetric
perturbations, and there exist stable asymmetric lattices
of topological defects. In the case of asymptotic repulsion
one has symmetric lattices of topological defects.

The (one-armed or singly-charged) isolated spiral so-
lution of Eq. (1) is of the form

a(r,0) = F(r)exp[i(wt £ 8 + ¥(r) + )] )

and satisfies the following equations for the real functions
F(r) and ¢(r):

AF — 3 F — (W)2F ~ H(A)F +20/F + F — F* =,

®3)

b (A,F - T%F - (1/1’)2F> + (A )F +2¢'F' — wF — cF3 =0,
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where (r,6) are polar coordinates, A, = 82 + 18, and
primes denote derivatives with respect to r, and ¢ is
some constant. The functions F' and v have the following
asymptotic behavior:

F(r)_'Vl—'kz’ 1/)'(7")—”9, r — 0o, (4)
F(ry~r , $'(r)~r , 10,

with w = —bk? — c(1 — k?). The constant k is the asymp-
totic wave number of the waves emitted by the spiral,
which is determined uniquely for given b,c. In general k
has to be determined numerically (see, e.g., [9, 10]).
Due to the interaction with other spirals or with a
boundary, the spiral core moves with some velocity v.
Also the phase ¢ becomes slowly varying in time. Inside
its region of influence bounded by the shock structures
the perturbed spiral solution can be written in the form

a(r,8) = [F(r) + W(r,0,t)] exp{i[wt + 6 + ¥ (r) + ¢(t)]},
(5)

where W is the correction to the unperturbed spiral so-
lution and (r,6) are now the coordinates comoving with
the velocity v (W can be complex). Clearly 8;¢, which
was not included in Ref. [4], describes the correction to
the frequency of rotation of the individual spiral. The
velocity of the drift v and the frequency change J;¢ have
to be chosen from the condition that the correction W re-
main small and slowly time dependent. (This description
of the relevant time dependence induced by interaction in
terms of a velocity and frequency change is strictly valid
only in the range vr <« 1. However, for larger distances
the influence of perturbations can be neglected altogether
as long as there are no other sources of waves.)

We now consider two spirals located on the x axis at
+X. The problem of the interaction of two symmetric
oppositely charged or equally charged spirals, where the
shock is located at = 0, is equivalent to the problem of
the interaction of one spiral with a plane boundary with
appropriate boundary conditions. To construct a slightly
asymmetric two-spiral state, we have to suppose that the
phases 1,2 are different (the other quantities except W
remain the same for the two spirals). Then the position
Xo of the shock between the spirals will depend on the
phase difference ; — @9 and can be determined from the
condition of continuity of the field:

y=0. (6)

The position of the shock can be determined easily in
the limit of large separation. Substituting (5) into (6) we
obtain at leading order of expansion in 1/X the condition
of continuity in the form

a; = ag for x = X,

k(X — Xo) + ¢1 = k(X + Xo) + 2, (7
and therefore
Xo = ¢/2k, (8)

where ¢ = 1 — 2. The matching of the solutions at the
position of the shock requires

8a1,2/0x =0 forx =X,, y=0. (9)

(In a first approximation we can neglect the curvature of
the shock line.)

Allowing for nonzero values of ¢ the analysis of Ref. [4]
gives, for oppositely charged spirals in the limit X >
¢/ (2k), the following equations of motion:

viz =Im ("W 1= K exp{—plX — ¢/ (2’“)]})(—“) / Im(C,/C,),

6Cy\2mpX

o — Re (—k¢—1 — R exp{—plX — /(2K)]}
v 6Cy/2mpX

—kv/1 — k2exp(—pX)
6Co/2mpX

Op =2Im [ ok

for pp/k < 1. Analogous equations hold for the velocity
of the second spiral. Here p is the decay rate of small per-
turbations around the isolated spiral solution. As shown
in Ref. [4], p is complex for |(c — b)/(1 + be)| > cer ~
0.845 (“oscillatory range”) and real otherwise (“mono-
tonic range”). Cy,,Co,1 are constants obtained from the
numerical solution of the linearized problem for the first
and zero harmonic of the perturbation, and u, 6§ are func-
tions of k,p given in Ref. [4]. Symmetric bound states
correspond to the case ¢ = 0, v; = 0, and vy, = vay.
They exist only in the oscillatory range. The constant ¢
determined numerically turns out to be positive for the
(first) symmetric bound state (see Fig. 1), so that the

X"‘) — v1Re(Cr/CYy), (10)

X~*sinh (%)] / Im(C10/Co) =~ i

—

state is unstable with respect to ¢. Hence the frequencies
of rotation (and therefore the underlying wave numbers)
become different, which means a breaking of the sym-
metry of the two-spiral solution. However, in fact, ¢ is
very small, so the symmetric bound states can be rather
long lived. The symmetry breaking was also observed for
other parameters, including b # 0, inside the oscillatory
range.

As a result of the symmetry breaking in a bounded
system only one “free” spiral will remain, whereas the
other spiral is pushed away to the boundary. Depending
on the boundary conditions the second spiral will finally
either annihilate at the boundary (nonflux boundary con-
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ditions, i.e., zero normal derivative on the boundary), or,
b=0, c=1 with periodic boundary conditions, the defect will persist

0.02 ] for topological reasons, but will be reduced to its core and
— :r'equency increment I enslaved in the corner of the shock structure of the free
0.01 spiral (see Fig. 2). The last case leads to an asymmetric
-~ lattice of topological defects, which appears to be stable
0.00 o in the oscillatory case. We have tested the stability of
N T such lattices in simulations of up to 4 x 4 cells.
0.0 /(\\\ 1 The analysis can be simplified considerably for the case
N N |c —b| — 0 and |(c — b)k|X > 1. The matching with the
002 \\\\ 1 outer solution can then be done analytically (see, e.g., [6,
T 11]) using a phase diffusion equation. From the analysis
—0.03r ] A l the equations for the frequency can be inferred in explicit
! . . no2 ?3 . » form for |(c — b)k|X > 1,
0% 15 20 25 30
/
Pistance 2X By = —2(1 + b2k ’1‘1 exp(—2|ck X |)sinh(|¢'|¢),
FIG. 1. The dependence of radial velocity v, and the fre- kX
quency increment ¢ = d(0;p)/dp at p =0forb=0,c=1. (11)

FIG. 2. Snapshots of the evolution of an oppositely
charged spiral pair into a stable antisymmetric state; b = 0, FIG. 3. Stable symmetric lattice of spirals with alternat-
¢=0, L = L, = 100, periodic boundary conditions. Time ing charge for b = 0, ¢ = 0.7, L, = 400, L, = 300, peri-
runs from top left to bottom right, At = 500. Real part (a) odic boundary conditions. Real part (a) and modulus (b) are
and modulus (b) are shown in gray scale. shown in gray scale.
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where ¢/ = (¢ — b)/(1 + bc). One sees that the phase
difference always tends to zero and the symmetry of the
state is restored. Actually, this result can be extracted
already from the classical paper of Hagan [10]. From this
work one can find the correction to the wave number of
a spiral confined to a circular domain. One finds that
decreasing the radius increases the wave number, which
ultimately means stability of the shocks. The stability
of symmetric states, together with the repulsion of the
spirals, shows the possibility for the existence of stable
symmetric (“antiferromagnetic”) lattices of spirals, i.e.,
lattices made up of free spirals with alternating topolog-
ical charge. Indeed, such lattices were obtained in nu-
merical simulations in the monotonic range (see Fig. 3).
Moreover, we have verified that starting from strongly
asymmetric initial conditions leads in the monotonic case
eventually to the restoration of the symmetry. We have
not observed hysteresis in the symmetry-breaking and
restoring transition. However, since the simulations are
extremely time consuming, a small hysteresis cannot be
excluded.

The results also carry over to the equally charged spi-
ral states. As was shown in [4] for large separation X,
the interaction of equally charged spirals is similar to
that of oppositely charged ones. The only difference is
that for the equally charged case both components of the

velocities of the spirals have opposite sign, whereas for
the oppositely charged case the tangential components
have the same sign. This causes the rotation of equally
charged spirals around the common center of symmetry.
For |b — ¢| below the critical value, one has repulsion at
large distance (as in the oppositely charged case) and
there is repulsion also at a small distance. So it is quite
clear that the interaction is repulsive everywhere.

For equally charged spirals one can expect the same
mechanism of symmetry breaking as for an oppositely
charged pair. Indeed, for |b — ¢| above the critical value,
such a breaking was observed in numerical simulation.
Like-charged spirals may also form more complicated
bound states or aggregates. In contrast to the two-spiral
bound states, which are simply rotating with constant
velocity, each spiral in the aggregate performs a more
complicated motion on the background of a steady rota-
tion.
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FIG. 2. Snapshots of the evolution of an oppositely
charged spiral pair into a stable antisymmetric state; b = 0,
c¢=0, Ly = L, = 100, periodic boundary conditions. Time
runs from top left to bottom right, At = 500. Real part (a)
and modulus (b) are shown in gray scale.
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FIG. 3. Stable symmetric lattice of spirals with alternat-
ing charge for b = 0, ¢ = 0.7, L, = 400, L, = 300, peri-
odic boundary conditions. Real part (a) and modulus (b) are
shown in gray scale.



